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SOME REMARKS ON SOLUTIONS OF FERMAT'S LAST EQUATION
IN TERMS OF WRIGHT'S HYPERGEOMETRIC FUNCTION

INTRODUCTION

In the seventeenth century the French mathematician and lawyer, Pierre

de Fermat (1601-1665) stated that he had a proof of a result which is now

known as

Fermat's Last Theorem: If n is an integer greater than 2, then the equa-

tion

Z"+ I" =Z- (1)

has no solution in positive integers.

Fermat did not give a proof of this result and, to this day, no one else has

either.

Recently it has been shown [1,2] that if Eq. (1) has a solution in positive

real numbers with z < y, then the exponent in Eq. (1) is given by

n = Iog/. [A9I(A)), (2)

where

= log./ 5(y/z), (3)

and
9(,) = l, 0<<1

*( ) = I, (,\ + 1,,\- I); 4

The function 19,1 in Eq. (4) is a special case of Wright's generalized

hypergeometric function pqfq whose series representation is given by

Aq [ (cu,A,),...,(v,, Ap) ; £ ri=r(i+An) z (r = r(A.r(+s,-n) n!" (5)
(A , B,), .... (09,, B,) ; ,,_-o0
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In this paper we shall give an equivalent form of Fermat's last theorem

in terms of the Wright function *(A) and the related Wright function 41(A)

defined by

( ) - ,,,,(2,X - 1)

In addition, we shall give some elementary properties of the functions '@(A\)

and A).

MAIN RESULT

Theorem: The following are equivalent:

(a) Fermat's Last Theorem is false.

(b) There is a transcendental number A E (0, 1) and a positive integer

n > 2 such that A'1(A) and 4(X) are simultaneously n-th powers

of rational numbers in (0,1).

In order to prove thib theorem we prove the following two lemmas.

Lemma 1: If Eq. (1) has a solution in positive integers with z < y and

gcd(z, y, z) = 1, then there is a unique transcendental number A in the

interval (0,1) such that

(7)

Proof. The function f(A) - (z/z)-\ is a decreasing continuous function of X

on [0,j], since x/z < 1. Moreover, f(1) = x/z < y/z < 1 = (0), so by the
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intermediate value theorem there is a unique A in the interval (0,1) such that

AA ) = =Z -•

Since gcd(z, y, z) = 1, the integers z, y, z are pairwise relatively prime.

Suppose A = a/b is rational, where a and b are relatively prime positive

integers. Then by Eq. (7),

or

zzb = bZ. (8)

Since z, y, z are pairwise relatively prime, there must be a prime p that divides

y but divides neither z nor z. So p divides the right side of Eq. (8) but not

the left side, and we have a contradiction. Thus A must be irrational.

This corrects the proof that A is irrational given in [1, p.?]. In [1,2] a

second proof of this result is given.

In order to show the transcendence of A we shall need the result of Gelfond

and Schneider [3, p. 21] which states that if a and 3 are algebraic, a 5 0, 1

and P3 is irrational, then ar is transcendental.

From Eq. (7), since z/z is algebraic, 0 < z/z < 1, and A is irrational, then

if A is also algebraic, y/z would be transcendental, which it is not. Hence A

must be transcendental and the lemma is proved. Note that Eq. (7) is just

another form of Eq. (3).

Lemma 2: For all A E (0,1) we have the identity

(+ (=1. (9)
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Proof. Using Eq. (5) we see that since r(1 + z) -zr(z),

(1, r( l +An) (-1)n
L1,) ; ] -1r(2+(A -1)n) n!(2,A- 1) ;,-

+ r(1 + An) (-l)-

- r(2 + (A - )n) r(i + n)

+ GoE r(1 + \+ n) (-1)ft+l
-- r( 1+ (A- 1)n) r(2+ n)

S A(. +n)r( + An) (-1)-

- 1 -Ar+ 1+(A-I)n) (I+ )l"(l+n)

r(.\ + An) (-I)-n

F(A +I+ (A -l)n) n!

Now using Eqs. (4)-(6) we have the result Eq. (9).

Proof of Theorem: If Fermat's Theorem is false, then Eq. (1) holds for

some n > 2 and positive integers z < y < z. By Lenua 1 there is a unique

transcendental number A E (0,1) such that Eq. (2) holds, i.e.,

A%(A) =(YI)"

and from Lemma 2,

4'(A) -- 1-AI(A)

= 1 - (ylz)"~

so that

*(A) = (Iz)". (10)
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(We shall derive Eq. (10) in another way in the next section.)

Conversely, if for some transcendental A E (0, 1), both A'P(A) and ir(A)

are n-th (in > 2) powers of some rational numbers, say

AI(A) = (u/vl)", 4'C\) = (U/V)%,

then from Lemma 2 we have

(UsV2)n + (U2VI )n = V2)

and the theorem is proved.

ANOTHER DERIVATION OF EQ. (10)

From Eq. (3) we have y = zxz 1- x which when substituted into Eq. (1)

gives

(z/z)n + (/z)M - 1 = 0.

Setting f = (zlz)% we have

+ - 1=0, 0<A<1. (11)

In order to solve Eq. (11) for f as a function of \ we shall need the

following result. The positive root of the trinomial equation

fP + p, _ 1=0, p>q>0 (12)

is given by

f (1 q/p) ; (13)
[(1+ lI/p, q/p- 1) ;

' -, , i i I I I I I I I5



for real u such that

11.l < (q/p)-/P'(1 - q/p)q/p-1 < 2 (14)

For integers p and q, Mellin in 1915 [4] gave the series solution, Eq.

(13), of the trinomial Eq. (12). However, his result is Vald for real p and q.

Lagrange circa 1768 [5) derived essentially the same result in terms of a series

of binomial coefficients. In 1758 [6] Lambert gave the solution of trinomial

equations. Ramanujan (7, pp. 71, 307] studied and derived solutions of

trinonials in Chapter 3 of his notebooks (1903-1914) and in his first quarterly

report (1913).

Now set p = 1, q =, - 1 in Eqs. (12)-(13). Then the condition Eq.

(14) is easil3 checked and using the definition of %1(A) given by Eq. (6) we

arrive at Eq. (10).

ADDITIONAL OBSERVATIONS

From Eq. (10) we see that the exponent in Eq. (1) is also given by

n = log./. ik1() (15)

This result is somewhat less complex than the result Eq. (2). We may also

write

4A) - A Z"(-1)n2F[-n, (1 - \)(n + 2); 2; 1],
n--o
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The latter equations follow directly from Eq. (9) and [1, Eqs. (19)-(20)]. In

addition from Eqs. (2), (3), (9), and (15) we observe that

[,)] = 1 - ()

[1 - A,',(A)]" = C)

CONCLUSION AND ACKNOWLEDGEMENT

Fermat's Last Theorem may be stated in equivalent form using Wright's

generalized hypergeometric function i12.

The authors thank Chung C. Yang for pointing out to us that \ is tran-

scendental.
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